Media Móvel Móvel Autoregressiva Spss
Introdução ao ARIMA: modelos não-sazonais: equação de previsão ARIMA (p, d, q): os modelos ARIMA são, em teoria, a classe mais geral de modelos para a previsão de uma série temporal que pode ser feita para ser 8220stação2008 por diferenciação (se necessário), talvez Em conjunto com transformações não-lineares, como registro ou desinflação (se necessário). Uma variável aleatória que é uma série temporal é estacionária se suas propriedades estatísticas são todas constantes ao longo do tempo. Uma série estacionária não tem tendência, suas variações em torno de sua média têm uma amplitude constante, e ela muda de forma consistente. Ou seja, seus padrões de tempo aleatório de curto prazo sempre parecem os mesmos em um sentido estatístico. A última condição significa que suas autocorrelações (correlações com seus próprios desvios anteriores da média) permanecem constantes ao longo do tempo, ou de forma equivalente, que seu espectro de potência permanece constante ao longo do tempo. Uma variável aleatória deste formulário pode ser vista (como de costume) como uma combinação de sinal e ruído, e o sinal (se um é aparente) pode ser um padrão de reversão média rápida ou lenta, ou oscilação sinusoidal, ou alternância rápida no signo , E também poderia ter um componente sazonal. Um modelo ARIMA pode ser visto como um 8220filter8221 que tenta separar o sinal do ruído, e o sinal é então extrapolado para o futuro para obter previsões. A equação de previsão de ARIMA para uma série de tempo estacionária é uma equação linear (isto é, regressão) em que os preditores consistem em atrasos da variável dependente ou atrasos dos erros de previsão. Isto é: valor previsto de Y uma constante ou uma soma ponderada de um ou mais valores recentes de Y e uma soma ponderada de um ou mais valores recentes dos erros. Se os preditores consistem apenas em valores atrasados de Y. é um modelo autoregressivo puro (8220 self-regressed8221), que é apenas um caso especial de um modelo de regressão e que pode ser equipado com o software de regressão padrão. Por exemplo, um modelo autoregressivo de primeira ordem (8220AR (1) 8221) para Y é um modelo de regressão simples no qual a variável independente é apenas Y rezagada em um período (LAG (Y, 1) em Statgraphics ou YLAG1 em RegressIt). Se alguns dos preditores são atrasos dos erros, um modelo ARIMA não é um modelo de regressão linear, porque não existe nenhuma maneira de especificar o erro 8222 do último período8217s como uma variável independente: os erros devem ser computados numa base de período a período Quando o modelo é ajustado aos dados. Do ponto de vista técnico, o problema com o uso de erros atrasados como preditores é que as previsões do modelo8217s não são funções lineares dos coeficientes. Mesmo que sejam funções lineares dos dados passados. Assim, os coeficientes nos modelos ARIMA que incluem erros atrasados devem ser estimados por métodos de otimização não-linear (8220hill-climbing8221) em vez de apenas resolver um sistema de equações. O acrônimo ARIMA significa Auto-Regressive Integrated Moving Average. Lags da série estacionada na equação de previsão são chamados quota de termos degressivos, os atrasos dos erros de previsão são chamados de termos de média de quotmoving, e uma série de tempo que precisa ser diferenciada para ser estacionada é dito ser uma versão quotintegratedquot de uma série estacionária. Modelos aleatórios e de tendência aleatória, modelos autoregressivos e modelos de suavização exponencial são todos os casos especiais de modelos ARIMA. Um modelo ARIMA não-sazonal é classificado como quotARIMA (p, d, q) quot model, onde: p é o número de termos autorregressivos, d é o número de diferenças não-sazonais necessárias para a estacionaridade e q é o número de erros de previsão atrasados em A equação de predição. A equação de previsão é construída da seguinte forma. Primeiro, digamos a d ª diferença de Y. o que significa: Observe que a segunda diferença de Y (o caso d2) não é a diferença de 2 períodos atrás. Em vez disso, é a primeira diferença da primeira diferença. Que é o análogo discreto de uma segunda derivada, isto é, a aceleração local da série em vez da sua tendência local. Em termos de y. A equação geral de previsão é: Aqui, os parâmetros de média móvel (9528217s) são definidos de modo que seus sinais são negativos na equação, seguindo a convenção introduzida pela Box e Jenkins. Alguns autores e software (incluindo a linguagem de programação R) os definem de modo que eles tenham sinais de mais. Quando os números reais estão conectados à equação, não há ambigüidade, mas é importante saber qual a convenção que seu software usa quando você está lendo a saída. Muitas vezes, os parâmetros são indicados por AR (1), AR (2), 8230 e MA (1), MA (2), 8230 etc. Para identificar o modelo ARIMA apropriado para Y. você começa por determinar a ordem de diferenciação (D) a necessidade de estacionar a série e remover as características brutas da sazonalidade, talvez em conjunto com uma transformação estabilizadora de variância, como registro ou desinflação. Se você parar neste ponto e prever que a série diferenciada é constante, você ajustou apenas uma caminhada aleatória ou modelo de tendência aleatória. No entanto, a série estacionada ainda pode ter erros autocorrelacionados, sugerindo que alguns números de AR (p 8805 1) e outros termos do número MA (q 8805 1) também são necessários na equação de previsão. O processo de determinação dos valores de p, d e q que são melhores para uma determinada série temporal será discutido em seções posteriores das notas (cujos links estão no topo desta página), mas uma prévia de alguns tipos Dos modelos ARIMA não-sazonais que são comumente encontrados são dados abaixo. Modelo autoregressivo de primeira ordem ARIMA (1,0,0): se a série estiver estacionada e autocorrelada, talvez possa ser predita como um múltiplo de seu próprio valor anterior, além de uma constante. A equação de previsão neste caso é 8230, que é regredida por si mesma atrasada por um período. Este é um modelo 8220ARIMA (1,0,0) constante8221. Se a média de Y for zero, então o termo constante não seria incluído. Se o coeficiente de inclinação 981 1 for positivo e menor que 1 em magnitude (deve ser inferior a 1 em magnitude se Y estiver estacionário), o modelo descreve o comportamento de reversão média em que o valor do período 8217 seguinte deve ser previsto 981 1 vez como Muito longe da média, já que este valor do período 8217s. Se 981 1 é negativo, ele prevê comportamento de reversão média com alternância de sinais, ou seja, ele também prevê que Y estará abaixo do período médio seguinte se estiver acima da média deste período. Em um modelo autoregressivo de segunda ordem (ARIMA (2,0,0)), haveria um termo Y t-2 também à direita e assim por diante. Dependendo dos sinais e das magnitudes dos coeficientes, um modelo ARIMA (2,0,0) pode descrever um sistema cuja reversão média ocorre de forma sinusoidalmente oscilante, como o movimento de uma massa em uma mola sujeita a choques aleatórios . ARIMA (0,1,0) caminhada aleatória: se a série Y não é estacionária, o modelo mais simples possível para isso é um modelo de caminhada aleatória, que pode ser considerado como um caso limitante de um modelo AR (1) no qual o autorregressivo O coeficiente é igual a 1, ou seja, uma série com reversão média infinitamente lenta. A equação de predição para este modelo pode ser escrita como: onde o termo constante é a mudança média de período para período (ou seja, a derivação de longo prazo) em Y. Esse modelo poderia ser ajustado como um modelo de regressão sem intercepção em que o A primeira diferença de Y é a variável dependente. Uma vez que inclui (apenas) uma diferença não-sazonal e um termo constante, esta é classificada como um modelo quotARIMA (0,1,0) com constante. O modelo aleatório-sem-atrasado seria um ARIMA (0,1, 0) modelo sem constante ARIMA (1,1,0) modelo autoregressivo de primeira ordem diferenciado: se os erros de um modelo de caminhada aleatória forem autocorrelacionados, talvez o problema possa ser corrigido adicionando um atraso da variável dependente à equação de predição - - é Ao regredir a primeira diferença de Y em si mesma atrasada por um período. Isso produziria a seguinte equação de predição: que pode ser rearranjada para Este é um modelo autoregressivo de primeira ordem com uma ordem de diferenciação não-sazonal e um termo constante - ou seja. Um modelo ARIMA (1,1,0). ARIMA (0,1,1) sem alisamento exponencial constante e simples: outra estratégia para corrigir erros autocorrelacionados em um modelo de caminhada aleatória é sugerida pelo modelo de suavização exponencial simples. Lembre-se de que, para algumas séries temporais não estacionárias (por exemplo, as que exibem flutuações ruidosas em torno de uma média variando lentamente), o modelo de caminhada aleatória não funciona, bem como uma média móvel de valores passados. Em outras palavras, ao invés de tomar a observação mais recente como a previsão da próxima observação, é melhor usar uma média das últimas observações para filtrar o ruído e estimar com maior precisão a média local. O modelo de suavização exponencial simples usa uma média móvel ponderada exponencialmente de valores passados para alcançar esse efeito. A equação de predição para o modelo de suavização exponencial simples pode ser escrita em várias formas matematicamente equivalentes. Um dos quais é o chamado formulário 8220error correction8221, em que a previsão anterior é ajustada na direção do erro que ele fez: porque e t-1 Y t-1 - 374 t-1 por definição, isso pode ser reescrito como : Que é uma equação de previsão ARIMA (0,1,1) sem constante com 952 1 1 - 945. Isso significa que você pode ajustar um alisamento exponencial simples especificando-o como um modelo ARIMA (0,1,1) sem Constante e o coeficiente estimado MA (1) corresponde a 1-menos-alfa na fórmula SES. Lembre-se que, no modelo SES, a idade média dos dados nas previsões de 1 período anterior é de 1 945. O que significa que tenderão a atrasar tendências ou pontos de viragem em cerca de 1 945 períodos. Segue-se que a idade média dos dados nas previsões de 1 período de um ARIMA (0,1,1) - sem modelo constante é 1 (1 - 952 1). Assim, por exemplo, se 952 1 0,8, a idade média é 5. Como 952 1 aborda 1, o ARIMA (0,1,1) - sem modelo constante torna-se uma média móvel de muito longo prazo, e como 952 1 Aproxima-se de 0, torna-se um modelo de caminhada aleatória sem drift. What8217s é a melhor maneira de corrigir a autocorrelação: adicionar termos AR ou adicionar termos MA. Nos dois modelos anteriores discutidos acima, o problema dos erros auto-correlacionados em um modelo de caminhada aleatória foi consertado de duas maneiras diferentes: adicionando um valor atrasado da série diferenciada Para a equação ou adicionando um valor atrasado do erro de previsão. Qual abordagem é melhor Uma regra de ouro para esta situação, que será discutida com mais detalhes mais adiante, é que a autocorrelação positiva geralmente é melhor tratada adicionando um termo AR ao modelo e a autocorrelação negativa geralmente é melhor tratada adicionando um Termo MA. Nas séries temporais econômicas e econômicas, a autocorrelação negativa surge frequentemente como um artefato da diferenciação. (Em geral, a diferenciação reduz a autocorrelação positiva e pode até causar uma mudança de autocorrelação positiva para negativa). Assim, o modelo ARIMA (0,1,1), em que a diferenciação é acompanhada por um termo MA, é mais freqüentemente usado do que um Modelo ARIMA (1,1,0). ARIMA (0,1,1) com alisamento exponencial constante e constante: ao implementar o modelo SES como modelo ARIMA, você realmente ganha alguma flexibilidade. Em primeiro lugar, o coeficiente estimado de MA (1) pode ser negativo. Isso corresponde a um fator de alisamento maior que 1 em um modelo SES, que normalmente não é permitido pelo procedimento de montagem do modelo SES. Em segundo lugar, você tem a opção de incluir um termo constante no modelo ARIMA, se desejar, para estimar uma tendência média não-zero. O modelo ARIMA (0,1,1) com constante tem a equação de previsão: as previsões de um período anteriores deste modelo são qualitativamente similares às do modelo SES, exceto que a trajetória das previsões de longo prazo é tipicamente uma Linha inclinada (cuja inclinação é igual a mu) em vez de uma linha horizontal. ARIMA (0,2,1) ou (0,2,2) sem alisamento exponencial linear constante: modelos de alisamento exponencial linear são modelos ARIMA que utilizam duas diferenças não-sazonais em conjunto com os termos MA. A segunda diferença de uma série Y não é simplesmente a diferença entre Y e ela mesma atrasada por dois períodos, mas é a primeira diferença da primeira diferença - isto é. A mudança de mudança de Y no período t. Assim, a segunda diferença de Y no período t é igual a (Y t-Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Uma segunda diferença de uma função discreta é análoga a uma segunda derivada de uma função contínua: mede a quotaccelerationquot ou quotcurvaturequot na função em um determinado ponto no tempo. O modelo ARIMA (0,2,2) sem constante prediz que a segunda diferença da série é igual a uma função linear dos dois últimos erros de previsão: o que pode ser rearranjado como: onde 952 1 e 952 2 são o MA (1) e MA (2) coeficientes. Este é um modelo de suavização exponencial linear geral. Essencialmente o mesmo que o modelo Holt8217s, e o modelo Brown8217s é um caso especial. Ele usa médias móveis exponencialmente ponderadas para estimar um nível local e uma tendência local na série. As previsões de longo prazo deste modelo convergem para uma linha reta cuja inclinação depende da tendência média observada no final da série. ARIMA (1,1,2) sem alisamento exponencial linear constante de tendência amortecida. Este modelo está ilustrado nos slides que acompanham os modelos ARIMA. Ele extrapola a tendência local no final da série, mas acha-se em horizontes de previsão mais longos para introduzir uma nota de conservadorismo, uma prática que tem suporte empírico. Veja o artigo em quotPor que a Tendência Damped funciona por Gardner e McKenzie e o artigo do quotGolden Rulequot de Armstrong et al. para detalhes. Em geral, é aconselhável manter os modelos em que pelo menos um de p e q não é maior do que 1, ou seja, não tente se ajustar a um modelo como o ARIMA (2,1,2), pois isso provavelmente levará a uma superposição E quotcommon-factorquot questões que são discutidas em mais detalhes nas notas sobre a estrutura matemática dos modelos ARIMA. Implementação da planilha: os modelos ARIMA, como os descritos acima, são fáceis de implementar em uma planilha eletrônica. A equação de predição é simplesmente uma equação linear que se refere a valores passados de séries temporais originais e valores passados dos erros. Assim, você pode configurar uma planilha de previsão ARIMA armazenando os dados na coluna A, a fórmula de previsão na coluna B e os erros (dados menos previsões) na coluna C. A fórmula de previsão em uma célula típica na coluna B seria simplesmente Uma expressão linear que se refere a valores nas linhas precedentes das colunas A e C, multiplicadas pelos coeficientes apropriados de AR ou MA armazenados nas células em outro lugar na planilha. O procedimento da Série Temporária da oficina de treinamento on-line SPSS fornece as ferramentas para criar modelos, aplicando um existente Modelo para análise de séries temporais, decomposição sazonal e análise espectral de dados de séries temporais, bem como ferramentas para computação de autocorrelações e correlações cruzadas. Os dois clipes de filme a seguir demonstram como criar um modelo de série de tempo de suavização exponencial e como aplicar um modelo de série de tempo existente para analisar dados de séries temporais. MOVIE: Modelo de Suavização Exponencial MOVIE: Ferramenta Modeladora Expert Expert Modelo modelo ARIMA Nesta oficina on-line, você encontrará muitos clipes de filme. Cada clipe de filme irá demonstrar algum uso específico do SPSS. Crie modelos TS. Existem diferentes métodos disponíveis no SPSS para criar Modelos de séries temporais. Existem procedimentos para modelos de suavização exponencial, univariante e multivariada Autoregressive Integrated Moving-Average (ARIMA). Esses procedimentos produzem previsões. Métodos de suavização na previsão: as médias móveis, as médias móveis ponderadas e os métodos de suavização exponencial são freqüentemente usados na previsão. O objetivo principal de cada um desses métodos é suavizar as flutuações aleatórias na série temporal. Estes são eficazes quando as séries temporais não exibem tendências significativas, efeitos cíclicos ou sazonais. Ou seja, a série temporal é estável. Os métodos de suavização geralmente são bons para previsões de curto alcance. Médias móveis: as médias móveis usam a média dos valores de dados k mais recentes nas séries temporais. Por definição, MA S (valores k mais recentes) k. O MA médio muda à medida que novas observações se tornam disponíveis. Média móvel ponderada: no método MA, cada ponto de dados recebe o mesmo peso. Na média móvel ponderada, usamos pesos diferentes para cada ponto de dados. Ao selecionar os pesos, calculamos a média ponderada dos valores de dados k mais recentes. Em muitos casos, o ponto de dados mais recente recebe o maior peso e o peso diminui para pontos de dados mais antigos. A soma dos pesos é igual a 1. Uma maneira de selecionar pesos é usar pesos que minimizem o critério de erro quadrado médio (MSE). Método de suavização exponencial. Este é um método médio ponderado especial. Este método seleciona o peso para a observação mais recente e os pesos para observações mais antigas são calculados automaticamente. Esses outros pesos diminuem à medida que as observações envelhecem. O modelo básico de suavização exponencial é onde F t 1 previsão para o período t 1, t observação no período t. F t previsto para o período t. E um parâmetro de suavização (ou constante) (0 lt a lt1). Para uma série temporal, estabelecemos F 1 1 para o período 1 e as previsões subseqüentes para os períodos 2, 3, podem ser calculadas pela fórmula para F t 1. Usando essa abordagem, pode-se mostrar que o método de suavização exponencial é uma média ponderada de todos os pontos de dados anteriores nas séries temporais. Uma vez que é conhecido, precisamos conhecer t e F t para calcular a previsão para o período t 1. Em geral, escolhemos um que minimiza o MSE. Simples: apropriado para séries em que não há tendência ou sazonalidade. Componente da média móvel (q): as ordens médias em movimento especificam como os desvios da série significam para os valores anteriores são usados para prever os valores atuais. O Expert Time Series Modeler determina automaticamente o melhor ajuste para os dados da série temporal. Por padrão, o Expert Modeler considera os modelos de suavização exponencial e ARIMA. O usuário pode selecionar apenas os modelos ARIMA ou Smoothing e especificar a detecção automática de outliers. O seguinte clipe de filme demonstra como criar um modelo ARIMA usando o método ARIMA e o Expert Modeler fornecido pelo SPSS. O conjunto de dados utilizado para esta demonstração é o conjunto de dados AirlinePassenger. Consulte a página Set de dados para obter detalhes. Os dados do passageiro da companhia aérea são dados como série G no livro Time Series Analysis: Forecasting and Control by Box e Jenkins (1976). O número variável é o total mensal de passageiros em milhares. Sob a transformação do log, os dados foram analisados na literatura. Aplicar modelos de séries temporais. Este procedimento carrega um modelo de série temporal existente a partir de um arquivo externo e o modelo é aplicado ao conjunto de dados SPSS ativo. Isso pode ser usado para obter previsões para séries para as quais dados novos ou revisados estão disponíveis sem começar a construir um novo modelo. A caixa de diálogo principal é semelhante à caixa de diálogo principal Criar modelos. Análise Espectral. Este procedimento pode ser usado para mostrar comportamentos periódicos em séries temporais. Gráficos de Seqüência. Este procedimento é usado para traçar os casos em seqüência. Para executar este procedimento, você precisa de um dado de séries temporais ou de um conjunto de dados ordenado em determinada ordem significativa. Autocorrelações. Este procedimento agrupa a função de autocorrelação e a função de autocorrelação parcial de uma ou mais séries temporais. Cross-Correlations. Este procedimento traça a função de correlação cruzada de duas ou mais séries temporais para atrasos positivos, negativos e zero. Consulte o Menu de ajuda do SPSS para obter informações adicionais sobre o modelo de séries temporais de aplicação, análise espectral, gráficos de sequência, autocorrelações e procedimentos de correlação cruzada. O Taller de Treinamento SPSS online é desenvolvido pelo Dr. Carl Lee, Dr. Felix Famoye. Assistentes assistenciais Barbara Shelden e Albert Brown. Departamento de Matemática, Universidade Central de Michigan. Todos os direitos reservados. ARIMA - Tendências SPSS Introdução Editar Este procedimento estimar modelos RAIMA (A uto r egressive I ntegrated M oving A verage) não-sazonais e sazonais (também conhecidos como modelos Box-Jenkins) com ou sem variáveis regressoras fixas. O procedimento produz estimativas de máxima verossimilhança e pode processar séries temporais com observações faltantes. Um exemplo de Editar Você está encarregado do controle de qualidade em uma fábrica e precisa saber se e quando as flutuações aleatórias na qualidade do produto excedem os níveis aceitáveis habituais. Você tentou modelar os escores de qualidade do produto com um modelo de alisamento exponencial, mas encontrado presumivelmente por causa da natureza altamente errática do datathat que o modelo faz pouco mais do que prever a média geral e, portanto, é de pouca utilidade. Os modelos ARIMA são adequados para descrever séries temporais complexas. Depois de construir um modelo ARIMA apropriado, você pode traçar os resultados da qualidade do produto juntamente com os intervalos de confiança superior e inferior produzidos pelo modelo. Pontuações que ficam fora dos intervalos de confiança podem indicar um verdadeiro declínio na qualidade do produto. Editar ilustração Para cada iteração: atrasos sazonais e não-sazonais (média autorregressiva e móvel), coeficientes de regressão, soma ajustada de quadrados e constante de Marquardt. Para as estimativas finais do parâmetro de máxima verossimilhança: soma residual de quadrados, soma residual ajustada de quadrados, variância residual, erro padrão do modelo, probabilidade logarítmica, critério de informação de Akaikes, critério bayesiano de Schwartzs, estatísticas de regressão, matriz de correlação e matriz de covariância. A variável dependente e quaisquer variáveis independentes devem ser numéricas. Assumption Edit A série deve ter uma média constante ao longo do tempo. Perturbação do bloqueador de anúncios detectado Wikia é um site gratuito para usar que ganha dinheiro com publicidade. Temos uma experiência modificada para os espectadores que usam bloqueadores de anúncios. O Wikia não está acessível se você fez outras modificações. Remova a (s) regra (s) do bloqueador de anúncios personalizado e a página será carregada como esperado.
Comments
Post a Comment